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ABSTRACT 

This paper presented on the methodology of designing intelligent energy management for hybrid electric vehicles 
(HEVs). This work outlines the use of the deep neural network (DNN) to design learning-based EM controller, 
which provides a powerful new framework to control the HEV system while improving the HEV performance. 
The framework utilizes the DNN technology to inference the new knowledge from the non-causal energy 
optimization results. Herein, we present intelligent energy controller, which was trained to control the HEV system 
by represented the current state of the system on preset several driving cycles. In order to prepare the data points, 
the near-optimal solutions are saved in the data store which obtained by the offline optimization processes at 
various starting SoC. Through computational examples on the series-parallel structure, the designed controller 
would be evaluated with a canonical rule-based and the non-causal optimized control strategy that fuel 
consumption improvement on the proposed EM controller observed and the effectiveness of the proposed 
approach in the designing high practicable EM controller was confirmed. 
 
KEYWORDS: deep neural network (DNN), energy control system, energy management (EM), hybrid electric 
vehicle (HEV), machine learning (ML) 

I. INTRODUCTION 
Nowadays, the energy management (EM) of the hybrid electric vehicles (HEVs) system with the goal of 
performance improvement is a challenging problem, because of the hybrid-power-source nature [1]. To meet this 
challenge, it is important to optimize the energy flow through the HEV by designing some strategies. The EM 
strategies is implemented by a EM controller, which controls the energy flow between all propulsive components 
while improving the HEV performances such as fuel economy. The desired EM controller as a closed-loop control 
system observes the current states of the system based on the sensory information and by a sub-optimal control 
logic drives the actuators that help to improve the HEV performance. 
The main favored and promoted approaches had been proposed on the EM of HEVs to improve HEV performance 
it can be classified into two main categories: 1) heuristic approach 2) optimization-based approach. The popular 
approach to design EM controller in real-time condition is based on heuristic methods which use rule-based or 
map-based techniques. These strategies are based on the human experiences, the analysis of power flow in HEV, 
input-output functions and characteristics of the main propulsive components. These heuristic-based methods lead 
to achieve robust strategies. However, they cannot achieve the actual optimal solution. 
Another approach is to utilize the optimal control techniques via the predefined objective function(s) are known 
as optimization-based energy management strategies. In general, this approach needs the significant 
computational demand. This approach as the viewpoint of driving knowledge is classified into non-causal and 
causal optimization-based EM sub-approaches. The former sub-approaches need the full and as well as a priori 
knowledge of driving mission that, reasonably, cannot directly applicable to real-time control system of the HEV 
for achieving to the optimal performance. On the contrary, to incorporate knowledge about driving patterns in real 
conditions, the predictive information from driving situations in near future is considered into the vehicle energy 
management strategies, which the optimization process is performed in real-time. However, the exact demand 
prediction in the real-time controller is difficult and directly related to the accuracy of the prediction information. 
Furthermore, the non-causal optimization-based EM approach can lead to derive new knowledge for practical 
conditions and, therefore, designing the EM controller without considering the complex behaviors caused by 
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human drivers. This kind of approach can be realized by the metaheuristic or strict optimization techniques. The 
metaheuristic techniques can perform the optimal seeking process around an existence solution which can be 
produced by heuristic methods. This is the main motivation of this research to achieve robustness-optimized 
strategies. However, the latter techniques can yield the global optimal solution but the reliability of the extracted 
knowledge in real conditions is lower than the metaheuristic techniques. Moreover, the strict optimization 
techniques generally need more computational time. 
The overall target of this research is proposing a methodology for designing efficient EM controller with high 
practicability with considering the optimality and implementation aspects via deriving causal knowledge from the 
non-causal optimization-based EM strategies, which can be applied for any kind of HEV. For this purpose, for 
balancing between optimality and implementation aspects a new approach for join engineering-oriented 
operations based on some policies and utilization of optimization techniques was proposed in [2]. Herein, an 
improved EM controller design framework is proposed. The Fig. 1 shows the conceptual diagram for designing 
the improved EM controller. At the first phase, a multi-stage optimization problem is designed to find optimal 
solutions via a well-defined objective function. It can be used for designing non-causal control strategies that was 
presented in the first paper. Then, a learning-based technique for considering the whole set of features 
simultaneously instead of manually analyzing the significance of individual features or a small set of features is 
proposed. The use of machine learning (ML) techniques can save labor-intensive manual process to derive the 
improved strategy for energy management and as well as by analyzing the optimal or near-optimal data can extract 
relationships and features. For this sake, the non-causal near-optimal or optimal solutions and related system state 
trajectories are saved in the data store where are used as the ML data for training and testing the learner as a 
supervised learning problem. It is our contribution to use the non-causal optimization-based control strategies and 
train an EM system using the deep neural network (DNN) technology to emulate the non-causal near-optimal 
solutions generated by an evolutionary computing technique. In the phase 3, the EM controller receives the 
immediate reaction of the HEV system at each time instance, i.e. short-term knowledge, and then governs the 
system. 
In this paper, to verify the designed EM controller based on the proposed methodology a case study is established. 
At the first, a systematic method for training EM controller and selection the suitable NN model is realized. The 
designed EM controller is verified with a canonical control strategy and the non-causal near-optimal control 
strategy which generated by the proposed optimization techniques in [2]. Consequently, the effectiveness of the 
proposed method for designing EM controller with high practicability is confirmed. 
This paper is organized as follows: Section II introduces the methodology of data preparation for learning. Section 
III presents the deep neural network technology that we realized for learning-based EM controller. Section IV 
states the methodology of DNN utilization. The simulation environment, data point’s specifications, DNN 
utilization, an overview of the results and, finally, the learning-based EM controller is used for rule extraction that 
can be implemented in real-time situations are presented in section V. Section VI concludes this paper. 
 
 

 

Fig. 1. Conceptual framework of designing the improved EM controller 
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II. METHODOLOGY OF DATA PREPARATION 
As mentioned before, the ML system processes some datasets for learning and as well as evaluating the obtained 
models. The required data are prepared by the results of the optimum seeking which founded by optimization 
process that presented in [2]. The first phase in Fig. 1 illustrates the workflow for gathering the data points. 
Since the learned model does not have the ability to accurately extrapolate beyond the input space, the ML data 
are prepared in such a way the input space is covered as possible as. The ML system data are influenced by the 
initial conditions, which consist of the initial states x0 of the HEV system and the modelling issues such as driving 
cycles. However, different HEV structures make various computational complete models that one specific EM 
controller cannot fulfil the desired HEV performance for all HEVs. To observe the mentioned principle, a 
diversification in configuration of the initial conditions should be considered. Thus, for preparing the data for ML 
system, however, the initial conditions can differ but the actual treatment for learning is same and lead to estimate 
accurately the final model. 
Data Preparation 
The results of several optimization processes comprise of multi-time-series of discretized decision (action) 
variables u as 

U = {u1, u2, ⋯ , u𝑚}   ,       U∈𝒰 ⊂ ℝ𝑚×𝑘 )1( 

where 𝑚 is the total number of the optimal solutions obtained by several optimization processes, and u is subset 
of the 𝑘-dimensional space (u ∈ ℝ𝑘). Besides, the measured signals x of the HEV system based on the optimal 
solutions are 

X = {x1, x2, ⋯ , x𝑚}   ,       X∈𝒳 ⊂ ℝ𝑚×𝑙 (2) 

where x is subset of the 𝑙-dimensional space (x ∈ ℝ𝑙). Generally, the EM optimization problem processes as a 
finite multistage optimization problem where is limited on finite-state and finite-action that leads to define finite 
state-action pairs. In other words, the ML system data are defined by a tuple of a vector-valued feature variable, 
i.e. the measured signals vector x, and a vector-valued target response, i.e. the decision vector u as 

X = {〈x1, u1〉, 〈x2, u2〉, ⋯ , 〈x𝑚, u𝑚〉} (3) 

Finally, each tuple makes a data point for supervised learning process. The measured signals of the HEV system 
consists of the propulsive components characteristics (e.g., the SoC, which reflects charge level of battery) and 
the vehicle velocity trajectory depending on how large the state space is while the results have reasonable accuracy 
in the EM studies. The actuations may be the set-points of the main propulsive components. Furthermore, the 
power split situations where the engine is on is the most important opportunity to select the appropriate data points. 
 

III. DEEP NEURAL NETWORK 
The deep neural networks (DNNs) technology is a sub-field of the ML is realized for learning process via adjusting 
the parameters of neural network layers, i.e. weights [3]. The weights make a correlation type between the 
measured signal(s), i.e. input, and the actuation(s), i.e. output. 
The most well-known network architecture in DNN is the feedforward multilayer neural network [4]. The 
feedforward multilayer neural network consists of an input layer, one or many hidden layers, and a single output 
layer. Each layer can have a different number of artificial neurons. The Fig. 2 depicts the standard feedforward 
multilayer neural network that artificial neurons in each layer represented by the circles that each neuron is 
connected to all artificial neurons in preceding layer, so-called fully connected layer. The information flows in 
feedforward multilayer neural network from input layer to output layer without any feedback connection. 

 

Fig. 2. Feedforward multilayer neural network concept 
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Learning DNN Procedure 
The process of learning in artificial neural network (NN) is iteratively adjusting the weights and biases and, 
thereby, allocating significance to certain bits of information and minimizing other bits that lead to learn model 
which features are tied to which output, i.e. target responses. 
The procedure can be classified into two phases: forward phase and backward phase. The DNN technology applies 
the supervised learning in forward phase, whereas, backpropagation technique calculates and then evaluates the 
error rate as the performance function and, finally, to update weights and parameters, autonomously. The objective 
is to minimize the error rate in backward phase. Different error rate formulas to define performance index were 
proposed. Typically, the performance function 𝐽 of back-propagation neural network in the DNN technology based 
on batch idea, which the train dataset is applied to the network before the weights are updated, is mean square 
error (MSE) measure and using as 

𝐽 =
∑ ∑ (𝑢̂𝑖𝑗 − 𝑢𝑖𝑗)

2𝑘
𝑗=1

𝑚
𝑖=1

𝑘𝑚
 (4) 

where 𝑢̂ is the output of the model and 𝑢 is the target response. 𝑚 and 𝑘 are the size of dataset and target response, 
respectively. 
Learning stops when the algorithm achieves an acceptable level of performance such as reducing error or 
stagnation in the search process in hypothesis space. 
It is important, to balance between minimizing the error rate on the training dataset and generalizing the model so 
that the use of overfitting prevention techniques is inevitable. The proposed idea in this work is using the manual 
regularization and early stopping methods together throughout in this research is called ESL strategy. However, 
the early stopping and the regularization methods individually improve the generalization of the NN model but 
the suitable selection of the maximum fails on validation dataset in early stopping method and, besides, the 
appropriate the manual regularization ratio is very difficult. Thereby, increasing the maximum fails of validation 
data set in the early stopping method and decreasing the regularization ratio, leads to overfitting. 
With considering the regularization method, the performance function 𝐽 of learning optimization algorithm is 
changed so that the additional term for penalizing large weights is added. The advantage of this method is to 
obtain a smoother NN model with better generalization. Therefore, the modified performance function 𝐽R is of the 
form 

𝐽R = (1 − 𝛾)𝐽 +
𝛾

2
∑ 𝑤𝑖

2

𝑛𝑤

𝑖=1

 (5) 

where 𝑛𝑤  is the total number of weights of the network. 𝛾 is the regularization ratio and determines the protection 
against overfitting level is between 0 and 1. 
In the other hand, the validation dataset is used to stop training early if the NN model performance on the 
validation data set fails to improve or remains the same for a pre-defined epoch’s number that so-called early 
stopping method. 
 

IV. DNN UTILIZATION METHODOLOGY 
The aim of this section is proposing a way to utilize the DNN technology on non-causal EM data. Various designs 
of the DNN (with standard fully connected feedforward architecture) realization by the mentioned data points can 
be considered. The problem in supervised learning is to find an adequate NN model and to tune its parameters. 
For finding an efficient NN design for EM controller, some issues should be considered that will be discussed in 
the following. 
Dataset’s definition: The ML system data points typically split up to train and test datasets. Due to the training 

algorithm and the strategy of generalizing model, the proportion of the train dataset is isolated as the validation 
dataset. The train dataset is used for training the hypotheses, whereas, the validation data are employed to evaluate 
the NN designs by calculating the error rate. In addition, the test dataset does not have any effect on the training 
process. The ratios of the validation and test datasets are, generally between 10 and 20%. In section II, the process 
of ML data preparation was stated. The data points are obtained by the finite sequences of time-series of offline 
optimization results. Therefore, during datasets configuration, the randomization of data points helps to generalize 
well the resulting network. In other hand, regarding to the power flow in the HEVs, the mentioned datasets are 
comprised to the proportional ratio of the operating modes, which split up power between energy sources. Fig. 3 
illustrates the workflow of the making ML datasets. 
NN topology: The exact number of hidden layer and nodes is a challenging issue that has a profound impact on 
learning results. Various research efforts have been made to propose several methods such as trial and error, 

http://www.ijesrt.com/


   ISSN: 2277-9655 
[Ghasemimoghadam* et al., 7(3): March, 2018]   Impact Factor: 5.164 
IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [784] 

heuristic search, exhaustive search, pruning and constructive techniques [6]-[10]. However, the empirically-
derived rule-of-thumb methods lead to obtain the NN model with inefficient accuracy. The authors suggest to use 
trial and error by designing several computational experiments. In order to evaluate the obtained structures, the 
statistical hypothesis testing methods would be applied. 
Training algorithm: Briefly, the training algorithms adjust the parameters of resulting network with considering 
to minimize the error performance function. They are classified into heuristic and standard numerical methods 
[5]. The heuristic methods apply some modifications on backpropagation technique such as using momentum or 
variable learning rate. However, the speed of convergence is significance but additional learning parameters and 
also failure to convergence in some problems cause to rarely promote in learning problems. On the contrary, the 
popular and favored methods are based on the standard numerical methods, which is divided to Jacobian-based 
and gradient-based techniques. However, the performance of calculation and the quality of resulting network 
affected by the size of network and the characteristics of problem. Thereby, by designing the computational 
experiments, the appropriate algorithm is revealed. 
Neuron’s parameters initialization: Generally, the initial values of neurons parameters are set by randomization 

techniques with symmetric feature between hidden layers. The Nguyen-Widrow initialization method generates 
the initial values for a layer so that the active regions of the layer’s neurons are uniformly distributed 

approximately evenly over the input space [11]-[12]. 
The appropriate active functions of layers for such kind of regression problems are utilized by the hyperbolic 
tangent sigmoid transfer functions for hidden layer(s) and the linear transfer functions at output layer [4]. 
Finally, the normalization process on the data points not only helps to improve the learning process, it also avoids 
the overfitting issue. This process is utilized to both the input and output of the network. Therefore, the 
unnormalized process is performed on the normalized values at output layer to fall into the units of the original 
target feature. 

 

Fig. 3. The proposed scheme of separation concept of the learning data 

 
V. CASE STUDY 

In this section, we realized the DNN technology to learn the non-causal near-optimal EM solutions for four 
standard driving cycles, i.e. Japanese cycle (JC08), Federal test procedure (FTP-75), new European driving cycle 
(NEDC) and Worldwide Harmonized Light Vehicle Test Procedure (WLTP class 3), so that the generalized 
knowledge is applied to design EM controller through deep neural network. Then, the obtained NN model is 
verified with a canonical control strategy under two standard driving cycles, i.e. Artemis (urban) and FTP-72. 
Regarding to the proposed framework, the realized DNN emulates the near-optimal or optimal management 
strategy as dictated by local search or evolution strategy algorithms for the current conditions in a way that can 
be utilized in practical situations. The JC08, FTP-75 and WLTP (class 3) cycles are chosen because they represent 
well the real traffic conditions, whereas, the NEDC was theoretically designed to assess the fuel consumption for 
light vehicles. 
The non-causal near-optimal EM solutions of a series-parallel HEV, which denoted by SPHEV system, by the 
proposed optimization algorithms in [2] are obtained. The detailed description of this vehicle and the framework 
of the modelling were presented in [2]. 
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As mentioned before, the feature and target data comprise the set of learning data. The feature data include 5 
measured (feature) signals while the target data comprise of two decision variables, i.e. response signals. To 
realize the DNN technology for the learning-based EM controller, the vector-valued feature signals set are 

x = {𝐶b, 𝜔e, 𝑉, 𝑃tc, 𝑎} (6) 

where 𝐶b is the SoC level of the battery; 𝜔e is the engine speed; 𝑉 is the vehicle speed; 𝑃tc is the driver’s power 

demand and 𝑎 is the vehicle acceleration. The response, i.e. actuations, variables arranged as 

u = {𝑇e, 𝑇em2} (7) 

where 𝑇e and 𝑇em2 indicate the engine and EM2 torques, respectively. 
The optimization algorithms to every driving cycle was applied multiple times so that multiple near-optimal 
trajectories were generated that way in each time the initial conditions are different. In this case study, only initial 
SoC of battery is changed between 45 and 75% by step 5, whereas, the final SoC was set as 60%. According to 
the section II, this diversification in the initial conditions leads to diversify in input space. Table 1 illustrates the 
results of optimization algorithms for finding the non-causal near-optimal EM strategies. The solution criterion 
of the best optimized solution at each initial SoC and under each driving cycle is based on the minimal fuel 
consumption among three proposed optimization search algorithms. Fig. 4 shows the trajectories of near-optimal 
battery SoC obtained under the WLTP (class 3) cycle. The same procedure was applied to every mentioned 
standard driving cycle. Finally, the trajectory of HEV-system state data, i.e. feature data, and the time series of 
decision variables, i.e. target response, for every mentioned driving cycle and initial conditions were generated. 
In addition, the training process and the NN designs evaluation process are run on Matlab platform with Core i5-
4460 processor and 8GB DDR3 RAM. 
 

Table 1. The diversification of the DNN experiments 
Drive Cycle Initial SoC (𝐶b,0) 

 45% 50% 55% 60% 65% 70% 75% 
NEDC 564.5 541.39 524.69 506.07 482.26 461.04 441.65 
JC08 370.2 345.052 319.921 298.219 275.101 253.741 230.861 

FTP-75 780.818 750.155 735.972 715.033 688.998 668.162 648.543 
WLTP (class 3) 1092 1066.9 1048.4 1029 1007.8 986.148 961.962 

 

 

Fig. 4. The near-optimal SoC trajectories on WLTP (class 3) cycle 

Selection of an efficient DNN design is a challenging problem in the learning. Thereby, several computational 
experiments would be established. The experiments are constructed so that the suitable NN design is obtained for 
the SPHEV system. The diversification of the experiments is based on 

 The training algorithms; 
 The number of hidden layers; 
 The number of artificial neurons 𝑛ℎ (nodes) in the hidden layer(s) 

Table 2 shows the diversification of these computational experiments. The experimented network topology 
includes one and two hidden layers. In the one hidden layer network, the nodes number changes between 5 and 
80 by step 5. Whereas, for two hidden layers structure, the nodes of each layer changed between 10 and 50 by 
step 10. In addition, the results obtained by the regularization ratios (𝛾), 0.1, 0.5, 0.9 and 0.95. The one hidden 
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layer networks totally comprise to 28 experiments, whereas, the two hidden layer’s networks consist of 50 
experiments. Each experiment represents a NN design, which runs ten times. 
As the viewpoint of numerical approaches of optimization techniques, two learning algorithms are utilized in the 
DNN experiments. The desired algorithms support training dataset with validation and test datasets. The first 
applied algorithm is Levenberg-Marquardt (LM) algorithm that is Jacobian-based. Usually, the LM algorithm can 
obtain lower MSE than any of the other algorithms with significantly convergence rate, whereas, the scaled 
conjugate gradient (SCG) algorithm is based on conjugate directions without using a linear search at each iteration 
[5], [13]. The below training termination criterions are considered as follows 

 The validation performance criterion, i.e. validation stop, which if it increased more than specific times 
since the last time it decreased, throughout in this experiment set, the maximum validation failures are 
defined as ten. 

 The regulation performance criterion by the adaptive parameter 𝜇, which is reached to maximum value 
implied to the convergence in training process. Throughout this case study, the maximum 𝜇 is equal to 
1E10. 

 

Table 2. The diversification of the DNN experiments 
Experiment’s Set Name No. Hidden layer(s) Training algorithm No. Nodes (nh) 

ESL_LM_2L 1 
LM 

5 ~ 80 
ESL_LM_3L 2 < 10~50,10~50 > 
ESL_SCG_2L 1 

SCG 
5 ~ 80 

ESL_SCG_3L 2 < 10~50,10~50 > 
 
The utilized randomization algorithm in this case study is defined by Twister algorithm so that the non-
repeatability values during multiple-times starting the training algorithm are generated and, hence, the results can 
be treated as statistically independent [14]. Throughout in the DNN experiments set, the Nguyen-Widrow 
initialization method for weights is utilized. Besides, the normalization process is performed by the min-max 
method so that they fall approximately in the range [−1,1]. 
The number of unknown parameters is obtained by the number of artificial neurons of network. If nh indicates the 
vector-valued of nodes number of neural network, the sum of parameters 𝑛p are calculated by (8) for one hidden 
layer and (9) for two hidden layers. 

𝑛p = 6𝑛h(1) + 2(𝑛h(1) + 1) (8) 

𝑛p = 6𝑛h(1) + 𝑛h(1)(𝑛h(1) + 1) + 2(𝑛h(1) + 1) (9) 

 
Experimental protocols 
The objective function of learning algorithms is defined as MSE measure. To compare the results of experiments, 
the root mean square error (RMSE) measure would be used. The RMSE is the distance, on average, of a data point 
from the fitted line, measured along a vertical line. The RMSE is directly interpretable in terms of measurement 
units, and so is a better measure of goodness of fit than a correlation coefficient such as MSE. 
NN Design Evaluation Strategy 
The aim of this section is to present a method to find the best NN model so that the desired model generalized 
well and learned effectively among the experiments. Again, each experiment includes ten trials. Multiple trials 
mitigate the probability of obtaining a poor initial distribution of random weights to begin the iterative 
optimization process. Briefly, at each trial, the NN model trained by the training data set and evaluated by 
validation data set. The comparative criterion between experiments is considered based on the validation data 
RMSE value. Finally, to find the best NN model, the evaluation process is fulfilled by applying the test dataset on 
the desired NN design. 
The utilized hypothesis testing method to make decision for finding the best NN design is Welch’s t-test [15] 
which each experiment is considered as an independent set of the samples, i.e. trials. In evaluation process of two 
NN designs, the first NN design is defined as null hypothesis, whereas, the second NN design is considered as the 
alternative hypothesis. Due to the statistical hypothesis testing result, the null hypothesis may be accepted or 
rejected. If the null hypothesis is rejected means the related NN design has the lower mean validation-data RMSE 
value would be selected. This process would be performed pairwise on the all NN designs. 
After the desired NN design is distinguished, the best model is selected based on the minimum RMSE due to 
applying test dataset among the ten trials. 
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Results 
1) Learning phase and model selection 
As mentioned before, in this work, the LM and SCG algorithms are employed in the computational experiments. 
The Fig. 5 ~ 8 show the results of the average validation-data RMSE values for the four aforementioned 
experiment’s sets. The regulation ratio 𝛾 is changed in 0.1, 0.5, 0.9 and 0.95 values. Due to the increase of the 
regulation ratio, the error rate is significantly decreased. As can be seen in Fig. 5, by increasing the nodes number, 
the mean validation RMSE has been decreased. The RMSE index of the NN designs by the SCG algorithm is not 
remarkably changed (Figs. 6 and 8). Regarding to the results of employed LM algorithm, increasing the nodes in 
second layer gradually leads to reduce the mean RMSE and variance values (Fig. 7). In addition, the learning 
process by using SCG algorithm is terminated due to the “validation stop” criterion that shows the validation 
failures are reached to maximum value. The stop criterion for NN models by the LM algorithm is almost 
“maximum 𝜇 reached”. 
The NN designs were evaluated by the independent two-sample t-test method. Since the variance of the 
experiments are not equal, the Welch’s t-test as a special kind of t-test was employed. The significance level (α) 

is set to 0.05. Table 3 shows the results of this evaluation for each experiment’s set. Again, the evaluation process 

was performed between the mentioned four experiment’s sets. The mentioned hypothesis testing method revealed 

that the ESL_LM_3L set by 50 nodes in first and 30 nodes in second hidden layer was the best NN design among 
other experiments that shows the dominant early stopping performance than the “maximum 𝜇 reached” criterion. 

Consequently, the high regulation ratio with the low nodes number cause to decrease the complexity of the neural 
network and, hence, achieve to obtain the appropriate NN design for the studied HEV. 
The best NN model is obtained by the test-data RMSE value on 10 trials which NN model has the lowest test-data 
RMSE value is preferable. In this case study, the best trial has the 2.27 test-data RMSE value. Fig. 9 illustrates 
the linear regression curves of the obtained model with the test-data output and related target responses. 
According to the phase 3 in Fig. 1, the NN model was employed in the studied HEV-system as the EM controller. 
The output of the trained EM controller (LCS) was evaluated with the non-causal near-optimal control strategies 
(NOCS) generated by the proposed optimization algorithms which applied as the data points in the learning 
process. Table 4 shows the overall fuel consumption of the LCS in comparison with the NOCS at initial SoC 60%. 
Figs. 10 and 11 compare the engine and EM2 torques of the NOCS and the LCS under WLTP (class 3) cycle at 
initial SoC 60%, respectively. 
 

 

Fig. 5. The error rates on ESL_LM_2L experiment’s set 

 

 

Fig. 6. The error rates on ESL_SCG_2L experiment’s set 
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Fig. 7. The error rates on ESL_LM_3L experiment’s set 

 

 

Fig. 8. The error rates on ESL_SCG_3L experiment’s set 

 

Table 3. The results of the best NN design 

Experiment’s Set Name 
Best NN design 

No. Nodes Mean Validation RMSE Standard Deviation Validation RMSE 
ESL_LM_2L 60 2.6731 0.1087 
ESL_SCG_2L 25 2.8834 0.1389 
ESL_LM_3L < 50,30 > 2.4029 0.1335 
ESL_SCG_3L < 40,50 > 2.3915 0.1912 

 

 

Fig. 9. The linear regression curve of the desired NN model 
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Table 4. Increment fuel consumption comparison at initial SoC 60% 

Controller 
Drive Cycle 

WLTP_C3 JC08 FTP NEDC 
Non-causal near-optimal 1029 298.219 715.033 506.07 

trained NN model 1033 305.06 720.079 515.33 
 

 

Fig. 10. Training result of NN model for the first decision variable, i.e. 𝑇e 

 

 

Fig. 11. Training result of NN model for the second decision variable, i.e. 𝑇em2 

 
2) Model verification 
In order to verify the obtained EM controller, the two standard driving cycles, i.e. FTP-72 and Artemis (urban), 
are simulated. The performance of the learning-based EM controller is compared with a canonical controller. 
Therefore, the proposed EM controller and the deterministic rule-based control strategy (PFCS) were applied on 
the SPHEV system. The overall fuel consumption under aforementioned driving cycles by the two control 
strategies is shown in the Table 5. The SoC and the engine velocity trajectories based on the two control strategies 
over the Artemis (urban) drive cycle are illustrated in Figs. 12 and 13. 
The SoC pattern changes serve insight to how the controllers manage the battery power and also the engine 
velocity trajectory reveals the engine operation status. The SoC pattern generated by the LCS was closer to the 
PFCS’s SoC pattern from 0 through 240 seconds. During 240 seconds and 830 seconds, the LCS controller was 

charging the battery with less power than the PFCS controller. After 830, the LCS’s and PFCS’s SoC patterns 

until 920s close together. In other words, the LCS’s SoC closely followed the trend of PFCS’s SoC pattern. From 

920s through the end, the PFCS controller charge the battery with higher power than the LCS controller. The 
ending SoC generated by both controllers was close together and same as the starting point, i.e. 60%. 
 

Table 5. Increment fuel consumption comparison 
 CS                  DC Artemis (Urban) FTP-72 

PFCS 262.077 468.798 
LCS 258.706 460.001 
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Fig. 12. The battery SoC under Artemis (Urban) cycle 

 

 

Fig. 13. The engine torque under Artemis (Urban) cycle 

 
VI. CONCLUSION 

In this paper, a learning-based framework for designing an efficient EM controller with high practicability in the 
HEVs has been presented. This framework utilizes the DNN technology for learning non-causal near-optimal 
energy settings based on the offline optimization processes. The utilized optimization techniques results cannot 
be used for in-vehicle control since it requires the full driving characteristics and computational demand. 
Therefore, the non-causal near-optimal solutions are saved in data store where are used as the learning data for 
training, validating and testing the learner. The learning work has been done to evaluate the effectiveness of the 
optimal paths generated by the utilized optimized techniques at various starting and fixed ending SoC under the 
several standard drive cycles. 
This research involves the performance verification of the learned EM controller by designing several 
computational experiments which evaluated with the PFCS and NOCS. The first challenge is selection the suitable 
NN model which it generalized well with lowest complexity in NN parameters. For this sake, we suggested a 
method to realize the DNN technology and applying the hypothesis testing method for various NN designs. Then, 
the controller has been implemented inside the SPHEV model in Matlab platform for performance evaluations 
which consist of the SoC level, engine velocity and the EM2 and engine torques during the four driving cycles 
and increment fuel consumption over each driving cycle. The output from the learning-based EM controller are 
the sub-optimal engine and EM2 torques, which are then checked to make sure the HEV variables are within the 
appropriate constraints. The designed EM controller is verified with the PFCS controller under two standard 
driving cycles. Output of computational experiments on the SPHEV confirmed that the suggested methodology 
is suitable for designing an efficient EM controller with high practicability. 
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